Pruning kernel density estimators
نویسندگان
چکیده
منابع مشابه
Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data
Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...
متن کاملComparison of the Gamma kernel and the orthogonal series methods of density estimation
The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...
متن کاملDensity Estimators for Truncated Dependent Data
In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...
متن کاملThe Relative Improvement of Bias Reduction in Density Estimator Using Geometric Extrapolated Kernel
One of a nonparametric procedures used to estimate densities is kernel method. In this paper, in order to reduce bias of kernel density estimation, methods such as usual kernel(UK), geometric extrapolation usual kernel(GEUK), a bias reduction kernel(BRK) and a geometric extrapolation bias reduction kernel(GEBRK) are introduced. Theoretical properties, including the selection of smoothness para...
متن کاملUniformly Root-n Consistent Density Estimators for Weakly Dependent Invertible Linear Processes
Convergence rates of kernel density estimators for stationary time series are well studied. For invertible linear processes, we construct a new density estimator that converges, in the supremum norm, at the better, parametric, rate n. Our estimator is a convolution of two different residual-based kernel estimators. We obtain in particular convergence rates for such residual-based kernel estimat...
متن کامل